佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1839|回复: 12

[問]有關logic circuit的問題!!!

[复制链接]
发表于 1-6-2004 01:40 AM | 显示全部楼层 |阅读模式
問題是用英文寫的...可以話,請幫忙翻譯翻譯...

Design a 4bit synchronous counter with a count sequence based on a number "6525".This number is our count sequence.

*注* Use a minimum number of J-K type flip-flops and NAND Gates in the design.Any appropriate logic minimisation technique can beused. Note that flip-flops have Q and Qbar outputs.
回复

使用道具 举报


ADVERTISEMENT

发表于 2-6-2004 11:48 AM | 显示全部楼层
Pop^o网友,
找到一个不错的网站:
http://www.play-hookey.com/digital/ripple_counter.html
可看看counter的部分:basic 4-bit counter, synchronous binary counter, frequency
divider等..

有点印象,不知有没有记错:
(都还给老师了,现在也没有书参考)
1.先算要用几个4-bit counter
2. 用logic circuit,到了count 的数,要reset所有JK flip flop.
3. logic circuit部分,minimize gates的数目..(很懒,没去想,哈哈).

你作到那里了?
以前念书时好像用一本O'Malley的书,好像有讲到..
回复

使用道具 举报

clearskies 该用户已被删除
发表于 3-6-2004 10:45 PM | 显示全部楼层
Synchronous circuit is driven by clock, and the flip flop will change state simultaneously in each clock cycle.4 bit meaning 4 jk ff, and you were asked to created the count sequence of

A0101
B1010
C1101
D0000

with 1 represent rising edge and 0 falling edge. Since the most significant bit is low all the time, you actually need only 3 jk ff. (8 is easier than 16)

The no. of Nand gate will be determined by your design technique ( k map etc).

You can start with a state diagram, followed by state assignment, state table, transistion table and  excitation table.
回复

使用道具 举报

 楼主| 发表于 3-6-2004 11:17 PM | 显示全部楼层
clearskies 于 3-6-2004 22:45  说 :
Synchronous circuit is driven by clock, and the flip flop will change state simultaneously in each clock cycle.4 bit meaning 4 jk ff, and you were asked to created the count sequence of

A0101
B ...

Thanks man....but how about the self restarting problem? for eg if the first starting number isnot in my conting sequence, how do i overcome the problem?
make assumption that all the non-counting sequnce number will go into my counting sequence?
or...?
回复

使用道具 举报

发表于 4-6-2004 12:28 AM | 显示全部楼层
哈哈,不好意思,原来我误解了Pop^o网友的题目,是"6-5-2-5"的sequence,不是6525个sequence..

看来我真的忘得7788了..

B=NOT(A),可以用第一个FF的Q和Qbar,用2个FF有没有问题?
if Q(FF1)=0101, Q(FF2)=0011,
C=Q(FF1) OR Q'(FF2)= (0101)OR(1100)=1101
这样可以吗?

麻烦网友教教我general method 里的transistion table and excitation table那
部分,我全忘了,又找不到书..
A        B             C       D
011 ->101 ->010 ->101

101又-->去011..
之后怎么作?
回复

使用道具 举报

calvin_tan 该用户已被删除
发表于 4-6-2004 07:05 AM | 显示全部楼层
is it using the 7 LED decoder? i have forgotten the code.
回复

使用道具 举报

Follow Us
 楼主| 发表于 4-6-2004 06:54 PM | 显示全部楼层
calvin_tan 于 4-6-2004 07:05  说 :
is it using the 7 LED decoder? i have forgotten the code.



nono.....
dats is call BCD....this onw is counter with JK ff....
is different
回复

使用道具 举报

发表于 4-6-2004 11:41 PM | 显示全部楼层
记忆一点点恢复了..
好像是这样:

inputs to logic circuit先假设用3个FF吧)
Q(FF1)= 01010101
Q(FF2)= 00110011
Q(FF3)= 00001111
Outputs:
A=          01010101
B=          10101010
C=          11011101
D=          00000000

应该写成truth table的,这里从简写"横"的..
用Karnaugh map,可找出:
A=Q(FF1)
B=Qbar(FF1)
C=Q(FF1) OR Qbar(FF2)
所以不需FF3

好像不会有self restarting problem..
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 5-6-2004 02:39 AM | 显示全部楼层
flyingfish 于 4-6-2004 23:41  说 :
记忆一点点恢复了..
好像是这样:

inputs to logic circuit先假设用3个FF吧)
Q(FF1)= 01010101
Q(FF2)= 00110011
Q(FF3)= 00001111
Outputs:
A=          01010101
B=          10101010
C=          ...



不是很明白Q(FF1)= 01010101
          Q(FF2)= 00110011
          Q(FF3)= 00001111
怎樣來的???
回复

使用道具 举报

发表于 6-6-2004 12:34 PM | 显示全部楼层
回复

使用道具 举报

 楼主| 发表于 7-6-2004 06:37 PM | 显示全部楼层
明白了...謝謝各位....:>
回复

使用道具 举报

jeenjang 该用户已被删除
发表于 12-6-2004 09:52 PM | 显示全部楼层
use moore machine or mealee machine will save u a lot of time
回复

使用道具 举报

 楼主| 发表于 16-6-2004 12:47 AM | 显示全部楼层
我已經做到了...謝謝!!!!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 22-11-2024 02:00 AM , Processed in 0.144713 second(s), 25 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表