查看: 1494|回复: 14
|
coordinate geometry
[复制链接]
|
|
怎么做呢?我找到b&p的值就是想不到b=p的equation。
the line which passes through the point P(p^2 ,2p)on the curve y^2=4x and the fixed point Q(2,0)meets the curve again at R.find the coordinates of R in terms of p. |
|
|
|
|
|
|
|
楼主 |
发表于 22-5-2005 10:40 AM
|
显示全部楼层
我已经找到了。其解答如下:
let a,b be the ciirdinate point of R
subsititute (a,b) into y^2=4x
so, b^2=4a
a=(b^2)/4
gradient of PQ=2p/(p^2-2)
subsititute mPQ and point Q into the equation y=mx+c
y=(2px-4p)/(p^2-2)
subsititute point R into this equation
b=(2pa-4p)/(p^2-2)
={(pb^2)/2-4p}/(p^2-2)
bp^2-2b=(pb^2)/2-4p
2bp^2-4b=pb^2-8p
2p(bp+4)-b(bp+4)=0
(2p-b)(bp+4)=0
bp+4=o or 2p-b=o(this is point of P)
b=-4/p
subsititute b=-4/p into a=(b^2)/4
a=4/(p^2) |
|
|
|
|
|
|
|
楼主 |
发表于 22-5-2005 10:43 AM
|
显示全部楼层
但是我现在却又不知道如何证明
the point of intersection of the tangents to the curve y^2=4x at P and at R lies on a straight line which is parallel to the y-axis
我只找到一个点而已如何证明呢??form不到equation. |
|
|
|
|
|
|
|
楼主 |
发表于 23-5-2005 11:11 AM
|
显示全部楼层
如何找the equation of the normal to the curve? |
|
|
|
|
|
|
|
楼主 |
发表于 24-5-2005 03:51 PM
|
显示全部楼层
问题:
a curve is defined by the parametric equation x=2t^2 , y=t^3 lies on the curve 8y^2=x^3. find the equation of the tangent to the curve at P.this tangent also meets the curve again at Q.find the coordinate os Q.
它的equation我找到了,但是我却找不到Q。它的equation是:4y=3tx-2t^3
如果subsititute P进去得不到答案,各位高手,有谁可以告诉我如何做吗?想了好久... |
|
|
|
|
|
|
|
发表于 24-5-2005 04:47 PM
|
显示全部楼层
|
|
|
|
|
|
|
楼主 |
发表于 24-5-2005 06:09 PM
|
显示全部楼层
抱歉,忘了告诉你们。两个P是不一样的,不同题目。
你有什么idea吗? |
|
|
|
|
|
|
|
发表于 24-5-2005 06:28 PM
|
显示全部楼层
try subsitute 整个equation:4y=3xt-2t^3进去。应该会找到,放p是错的。 |
|
|
|
|
|
|
|
楼主 |
发表于 24-5-2005 07:44 PM
|
显示全部楼层
y=(3tx-2t^3)/4
subsititute y=(3tx-2tx^3)/4 into 8y^2=x^3
9t^2x^2 -12t^4x + 4t^6=2x^3
2x^3 - 9t^2x^2 + 12t^4x -4t^6=0
x^3 不能用b^2-4ac的方程式解答,对吗? |
|
|
|
|
|
|
|
发表于 24-5-2005 11:59 PM
|
显示全部楼层
蝎杰 于 24-5-2005 03:51 PM 说 :
问题:
..... of the tangent to the curve at P.this tangent also meets the curve again at Q.find ...
不 知 道 P 的 座 标 应 该 是 找 不 到 Q 的 。 因 为 Q 点 随 着 P 而 变 , 若 P 不 是 定 住 的 , 那 么 便 无 法 得 知 Q 。 |
|
|
|
|
|
|
|
发表于 25-5-2005 10:07 AM
|
显示全部楼层
蝎杰 于 24-5-2005 07:44 PM 说 :
y=(3tx-2t^3)/4
subsititute y=(3tx-2tx^3)/4 into 8y^2=x^3
9t^2x^2 -12t^4x + 4t^6=2x^3
2x^3 - 9t^2x^2 + 12t^4x -4t^6=0
x^3 不能用b^2-4ac的方程式解答,对吗?
你已经知道其中一个solution是P,所以divide the equation to (x-2t^2),你应该找到quadratic function。 |
|
|
|
|
|
|
|
发表于 25-5-2005 05:52 PM
|
显示全部楼层
蝎杰 于 24-5-2005 03:51 PM 说 :
问题:
a curve is defined by the parametric equation x=2t^2 , y=t^3 lies on the curve 8y^2=x^3. find the equation of the tangent to the curve at P.this tangent also meets the curve again at Q.find ...
8y^2=x^3 肯定是对的吗? |
|
|
|
|
|
|
|
楼主 |
发表于 25-5-2005 07:25 PM
|
显示全部楼层
8^2=x^3
肯定对的,这equation是题目给的,应该没问题吧? |
|
|
|
|
|
|
|
发表于 26-5-2005 07:10 PM
|
显示全部楼层
为什么不同的
你说parametric equation 是 lie on the curve 8y^2=x^3
我以parametric equation 的其中一个把 t 作为 subject,拿到 x-y equation,可是跟问题不一样~ |
|
|
|
|
|
|
|
楼主 |
发表于 27-5-2005 10:22 PM
|
显示全部楼层
我们拿
x=2t^2 subsititute into 8y^2=x^3
8y^2=(2t^2)^3
=8[t^6]
subsititute y=t^3 into 8y^2=8[t^6]
8[t^3]^2=8t^6
这么做不对吗??
不过我已经找到Q的值了!
起解答如下:
subsititute y=3/4tx-1/2t^3 into 8y^3=x^3
8[(3/4)tx-(1/2)t^3]=x^3
8[(9/16)(t^2)(x^2)-3/4(t^4)x-(1/4)t^6]=x^3
2x^3-9(t^2)(x^2)+12x(t^4)-4t^6=0
已知道x=2t^2 是其中一个root
(x-2t^2)[2x^2-5xt^2-2t^4]=0
(2x-t^2)(x-2t^2)=0
x=t^2/2
subsititute x=t^2/2 into 8y^2=x^3
y=t^3/8 or -t^3/8 |
|
|
|
|
|
|
| |
本周最热论坛帖子
|