查看: 1347|回复: 6
|
關於algebraic expression的問題
[复制链接]
|
|
(4^n+2) - (4^n-1) =63(4^n-1)
WHY?向各位大大求解.gif)
|
|
|
|
|
|
|
|
发表于 10-10-2013 09:33 PM
来自手机
|
显示全部楼层
|
|
|
|
|
|
|
发表于 10-10-2013 09:36 PM
来自手机
|
显示全部楼层
|
|
|
|
|
|
|
发表于 10-10-2013 09:54 PM
|
显示全部楼层
(4^n+2) - (4^n-1) = 63(4^n-1)
(4^n+2) = 63(4^n-1) + (4^n-1)
(4^n+2) = 64(4^n-1)
(4^n+2) = (4^3)(4^n-1)
(4^n+2) = (4^n+2)
∴ n ∈ R 本帖最后由 mathlim 于 10-12-2013 06:36 AM 编辑
|
|
|
|
|
|
|
|
发表于 9-12-2013 05:17 PM
|
显示全部楼层
我用这个方法。
(4^n+2) - (4^n-1)
= (4^n-1)[(4^3 - 1)]
= (4^n-1)[64-1]
= 63(4^n-1) |
|
|
|
|
|
|
|
发表于 10-12-2013 06:33 AM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 29-3-2014 11:49 PM
|
显示全部楼层
(4^n+2) - (4^n-1) = 63(4^n-1)
还是
4^(n+2) - 4^(n-1) = 63[4^(n-1)]

|
|
|
|
|
|
|
| |
本周最热论坛帖子
|